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Abstract

We introduce a numerical model for the simulation of nuclear flames in Type Ia su-
pernovae. This model is based on a low Mach number formulation that analytically
removes acoustic wave propagation while retaining the compressibility effects re-
sulting from nuclear burning. The formulation presented here generalizes low Mach
number models used in combustion that are based on an ideal gas approximation
to the arbitrary equations of state such as those describing the degenerate matter
found in stellar material. The low Mach number formulation permits time steps that
are controlled by the advective time scales resulting in a substantial improvement
in computational efficiency compared to a compressible formulation. We briefly dis-
cuss the basic discretization methodology for the low Mach number equations and
their implementation in an adaptive projection framework. We present validation
computations in which the computational results from the low Mach number model
are compared to a compressible code and present an application of the methodology
to the Landau-Darrieus instability of a carbon flame.
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1 Introduction

Currently, the accepted model for Type Ia supernovae is the explosion of a
carbon-oxygen white dwarf. Observational evidence is inconsistent with the
nuclear burning occurring in a prompt detonation mode. Detailed compu-
tations show that a detonation predicts excess amounts of iron and fails to
account for significant amounts of intermediate mass elements observed in the
spectra of supernovae events. For this reason, it is believed that at least the
initial phases are governed by the propagation of constant-pressure deflagra-
tions. However, to obtain the energy generation rate needed to explode the
star the deflagration must be dramatically accelerated relative to the laminar
flame speed of the burning front. The recent review article by Hillebrandt and
Niemeyer [1] provides an excellent discussion of the issues.

Within the star there are numerous mechanisms that have the potential to
accelerate a deflagration wave. Landau-Darrieus [2,3] instabilities can lead to
wrinkling of the flame [4]. Because the lighter ash lies below the heavier carbon-
oxygen fuel, the flame interface is also subject to Rayleigh-Taylor and Kelvin-
Helmholtz instabilities. Finally, the flame can be accelerated by interaction
with turbulence arising from convective instabilities within the flame as well
as turbulence generated by the deflagration itself.

Efforts focused on understanding the role of the different types of instabilities
on accelerating a nuclear flame have generated substantial interest in compu-
tational studies of flame microphysics. Several authors have performed simula-
tions in both two and three dimensions based on representing the flame as an
interface propagating through the media, see Hillebrandt and Niemeyer [1] for
a discussion of this literature. It has also become possible to perform detailed
numerical simulations in 2D and 3D that fully resolve the relevant burning and
diffusive length scales. Niemeyer and Hillebrandt [5] performed studies of this
type but indicate that at the resolutions they present, the effects of numerical
diffusion are still apparent. In an effort to model larger physical domains, sev-
eral investigators have performed resolved computations using modified flame
physics. For example, Khokhlov [6] uses an auxiliary variable to model the
burning front that predicts the correct 1-d laminar flame speed while thick-
ening the flame. Niemeyer and Hillebrandt [7] and Niemeyer et al. [8] use a
weaker nonlinearity in the reaction term to thicken the flame.

Although these types of simulation have been able to provide substantial in-
sight into the dynamics of nuclear deflagrations, they are limited in terms
of both the spatial extent that can be modeled and the computational ex-
pense associated with long time integrations. The use of modern adaptive
mesh methodologies such as FLASH [9,10] can be used to extend the size of the
system that can be modeled; however, temporal integration remains a prob-
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lem. The issue arises because the flame phenomena being studied propagate at
speeds less than 1% of the sound speed in the star. Thus, time step limitations
based on acoustic Courant-Friedrich-Levy (CFL) considerations severely limit
the time step relative to the velocity of the flame.

Our goal in this paper is to introduce a low Mach number formulation of nu-
clear flames that alleviates the acoustic time step constraint. This approach,
based on low Mach number asymptotics, uses a projection formulation cou-
pled with higher-order Godunov advective differencing that allows time-steps
based on advection speeds rather than acoustic speeds. This type of approach
was first used for combustion by Rehm and Baum [11] and was derived from
low Mach number asymptotics by Majda and Sethian [12]. For problems in
combustion, governed by an ideal gas equation of state, the low Mach num-
ber approach has seen substantial development and has been successfully ap-
plied to simulation of laminar flames in one and two dimensions and to three-
dimensioanl turbulent flames. A complete survey of the combustion literature
is beyond the scope of this paper. The reader is referred to Knio et al. [13]
and Day and Bell [14] and the references cited in those works for methodol-
ogy for time-dependent, premixed flames. For steady diffusion flames, see, for
example, Bennett and Smooke [15] and Becker et al. [16] and the references
cited in these works.

The methodology presented here generalizes the approach of Day and Bell [14]
to the nuclear deflagration regime. In particular, we discuss the extension of
the low Mach number methodology to degenerate equations of state typical of
stellar environments. For applications of this approach see Bell et al. [17] and
Bell et al. [18]. We note that in this paper we will focus on fully resolving both
the reaction and diffusion length scales; consequently, computational require-
ments will limit the domains of interest to at best a few meters in each linear
dimension. For this reason, we do not need to incorporate the thermodynamics
effect of stratification in the star, as represented by an anelastic approxima-
tion, in our computations. More precisely, for the domains we consider, the
thermodynamic pressure varies by at most 1 part in 106 over the domain, so
assuming that this pressure is constant for the simulation is a neglible effect.
For larger scale computations where the spatial scale ranges over several kilo-
meters, a generalized low Mach number model would be required to accurately
capture variations in thermodynamic pressure with altitude.

In the next section we discuss the basic equations and introduce the low Mach
number model. In section 3 we discuss the basic projection algorithm and
sketch its incorporation into an adaptive mesh refinement algorithm. Section 4
presents a validation of the methodology by comparison with detailed com-
pressible computations and presents an initial application of the method to
the study of a Landau-Darrieus instability in two dimensions. In the final sec-
tion we discuss potential application of this approach to more detailed study
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of nuclear flame acceleration mechanisms.

2 Low Mach number model

The low Mach number model is derived from the compressible flow equations
using asymptotic analysis. These equations describe conservation of mass, mo-
mentum and energy augmented with species equations for the isotopes present
in the flame. For the stellar conditions typical of C + O flames we are consid-
ering here, the Lewis number, which is the ratio of energy transport to species
diffusion, is O(107) and the Prandtl number, which is the ratio of fluid viscos-
ity to energy transport, is O(10−5). Under these conditions, the flow is well
approximated by the system (see, for example, Timmes and Woosley [19])

∂ρ

∂t
+∇ · ρU = 0

∂ρU

∂t
+∇ · (ρUU + p) = ρ~g

∂ρE

∂t
+∇ · (ρUE + pU) =∇ · (κ∇T ) + ρU · ~g −

∑
ρqkω̇k

∂ρXk

∂t
+∇ · ρUXk = ρω̇k

Here, ρ, U , T and p are the density, velocity, temperature, and pressure, re-
spectively, and E = e + U · U/2 is the total energy with e representing the
internal energy. In addition, Xk is the abundance of the kth isotope, with asso-
ciated production rate ω̇k and energy release qk. Finally, ~g is the gravitational
force and κ is the thermal conductivity. (We note that the assumptions that
fluid viscosity and species diffusion are zero can be easily relaxed, see Day and
Bell [14]).

For the stellar conditions being considered here the pressure contains contri-
butions from ions, radiation, and electrons. (See Kippenhahn and Weigert [20]
for a discussion of equations of state for stellar matter.) Thus,

p = pion + prad + pele (1)

with

pion =
ρkT

Āmp

, prad = aT 4/3

and pele is the contribution to the thermodynamic pressure due to fermions.
In these expressions, mp is the mass of the proton, a is related to the Stefan-
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Boltzmann constant σ = ac/4, c is the speed of light, 1/Ā =
∑

k Xk/Ak,
Ak is the atomic number of kth isotope, and k is Boltzmann’s constant. We
note that pressure is of the form p = p(ρ, T, Xk). The ionic component has
the form associated with an ideal gas but the radiation and electron pressure
components do not.

As a prelude to developing the low Mach number equations, we first rewrite
the energy equation in terms of the enthalpy, h = e + p/ρ

ρ
Dh

Dt
− Dp

Dt
= ∇ · κ∇T −

∑
k

ρqkω̇k

For the low Mach number asymptotic analysis, we introduce scaled coordi-
nates in which the time scale is proportional to the spatial scale times the
advective velocity scale. In this scaling, we expand pressure and velocity in
Mach number, M = U/cs, (cs is the sound speed),

p(x, t) = p0(t) + Mp1(t) + M2π(x, t)

with a similar equation for U(x, t). Substituting these expansions into the
equations of motion given above and matching terms in M , we find p1(t) = 0,
and a modified momentum equation:

∂ρU

∂t
+∇ · ρUU = −∇π + ρ~g. (2)

Thus, the pressure is decomposed into a thermodynamic component, p0, that
depends only on time and a perturbation component, π, that is O(M2). For the
low Mach number model, we ignore the O(M2) effects on the thermodynamics.
For simplicity, in this paper we will assume that the nuclear flame occurs in
an open environment under constant pressure so that the thermodynamic
pressure is, in fact, a constant which we denote as p0. With this assumption,
the enthalpy equation reduces to

∂ρh

∂t
+∇ · (ρUh) = ∇ · κ∇T −

∑
k

ρqkω̇k (3)

The enthalpy and momentum equations combined with the species equations
(and conservation of mass) describe the evolution of the low Mach number
system. However, this evolution is also constrained by the equation of state.
We will now show that this constraint is equivalent to a constraint on the
divergence of the velocity field. If we differentiate the equation of state along
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particle paths we obtain

0 ≡ Dp

Dt
=

∂p

∂ρ

Dρ

Dt
+

∂p

∂T

DT

Dt
+
∑
k

∂p

∂Xk

DXk

Dt
.

Combining this equation with the mass conservation equation, we obtain

∇ · U =
1

ρ∂p
∂ρ

(
∂p

∂T

DT

Dt
+
∑
k

∂p

∂Xk

DXk

Dt

)

To complete the specification of the low Mach number model, we need to
derive the temperature evolution equation. We note that although the ther-
modynamic variables are most naturally expressed here in terms of ρ, T , and
Xk, for this derivation, it is more convenient to express the thermodynamics in
terms of p, T and the Xk. With this dependence, differentiating the enthalpy
equation we have

Dh

Dt
=

∂h

∂T

∣∣∣∣∣
p,Xk

DT

Dt
+

∂h

∂p

∣∣∣∣∣
T,Xk

Dp

Dt
+
∑
k

∂h

∂Xk

∣∣∣∣∣
p,T,Xj,j 6=k

DXk

Dt

After substituting from the above equations and using the low Mach number
condition on p we have

ρcp
DT

Dt
= ∇ · κ∇T −

∑
k

ρ(qk + ξk)ω̇k (4)

where ξk = ∂h
∂Xk

∣∣∣
p,T,Xj,j 6=k

, and cp = ∂h
∂T

∣∣∣
p,Xk

is the specific heat at constant
pressure.

Substituting this into the above equation for ∇ · U yields an expression for a
constraint on the advective flow velocities:

∇ · U =
1

ρ∂p
∂ρ

(
1

ρcp

∂p

∂T

(
∇ · κ∇T −

∑
k

ρ(qk + ξk)ω̇k

)
+
∑
k

∂p

∂Xk

ω̇k

)
≡ S.(5)

3 Numerical methodology

In this section we discuss the numerical methodology used to integrate the
low Mach number equations described above. The spatial discretization uses
a second-order finite volume Godunov procedure. The temporal discretization
strategy is a fractional step approach based on a projection approximation. In
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this approach we integrate the equations for momentum, isotope abundances
and enthalpy using a lagged approximation to the constraint. We then apply
a discrete projection to the intermediate velocity computed in the first step
to enforce the constraint. This basic fractional step algorithm is embedded in
a hierarchical adaptive mesh refinement (AMR) algorithm. The version of the
methodology presented here is an adaptation of the method presented by Day
and Bell [14] for chemical combustion. In the next subsection we describe the
single-grid algorithm. We then discuss incorporation of that algorithm into an
adaptive projection framework.

Before describing the algorithm, we note that our approach differs from the
standard approach to discretizing the low Mach number system originally
proposed for combustion by McMurtry et al. [21]. In the McMurtry et al.
approach an auxiliary equation for the density in convective form is derived
by differentiating the equation of state in time and replacing temporal deriva-
tives of temperature and species by spatial derivatives of these quantities. This
equation is then used to advance the density in time with temperature being
determined from the equation of state. In the projection step, the McMurtry
et al. algorithm solves a constant coefficient Poisson equation to modify the
velocity field so that the conservation of mass equation is satisfied. In constrast
to this approach, we directly solve the conservation form of the equations for
both enthalpy and density. Our projection step solves a variable coefficient
elliptic equation to enforce the velocity constraint given in equations 5. Al-
though a comprehensive comparison of these approaches is not available, our
approach, although somewhat more expensive, conserves both mass and en-
ergy and appears to provide a more robust discretization. See Day and Bell [14]
and Nicoud [22] for a more complete discussion of these issues.

3.1 Single grid algorithm

The single grid algorithm is essentially a three-step process. First, we use an
unsplit second-order Godunov procedure to predict a time-centered (tn+1/2)
advection velocity, UADV,∗, using the cell-centered data at tn and the lagged
pressure gradient from the interval centered at tn−

1/2. The provisional field,
UADV,∗, represents a normal velocity on cell edges analogous to a MAC-type
staggered grid discretization of the Navier-Stokes equations (see Harlow and
Welch [23], for example). However, UADV,∗ fails to satisfy the time-centered
divergence constraint. We apply a discrete projection by solving the elliptic
equation

DMAC 1

ρn
GMACφMAC = DMACUADV,∗ −

(
Sn +

∆tn

2

Sn − Sn−1

∆tn−1

)
(6)
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for φMAC, where DMAC represents a centered approximation to a cell-based
divergence from edge-based velocities, and GMAC represents a centered ap-
proximation to edge-based gradients from cell-centered data. The solution,
φMAC, is then used to define

UADV = UADV,∗ − 1

ρn
GMACφMAC.

UADV is a second-order accurate, staggered-grid vector field at tn+1/2 that dis-
cretely satisfies the constraint (5), and is used for computing the time-explicit
advective derivatives for U , ρh and ρXk.

In the next step of the algorithm we advance the advection-reaction-diffusion
system for ρh and ρXk. For the supernovae flames considered here, the nuclear
burning occurs on a scale faster than the fluid dynamics. For that reason,
we treat the reactions using a symmetric Strang-splitting approach so that
the reactions can be treated with stiff ODE technology. We first advance the
reactions terms ∆t/2 in time. We then advance the advection-diffusion part
of the equation ∆t in time followed by a second advancement of the reaction
terms ∆t/2 in time.

The reaction part of the enthalpy and isotope equations are of the form

∂Xk

∂t
= ω̇k

and

cp
∂T

∂t
= −

∑
k

(qk + ξk)ω̇k

For the reaction phase, cp changes with temperature and composition; how-
ever, because of the computational expense associated with computing cp we
have frozen its value for the integration of the ODE system. Numerical tests
demonstrated that this simplification did not affect the computed deflagra-
tions. As a result of this approximation, we do not use the updated temper-
ature from the reaction step to update the enthalpy. Instead, we explicitly
compute the change in enthalpy resulting from the change in isotope abun-
dances and use this updated enthalpy to derive the correct temperature at the
end of the reaction step.

In our implementation, we integrate the chemistry component using time-
implicit backward difference methods, as implemented in VODE [24], a general-
purpose stiff ODE integration software package. VODE utilizes adaptivity in
order of accuracy and subcycled time-step selection so that an absolute error
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tolerance of 10−16 in mass fractions is maintained throughout. Typically, the
resulting scheme is between third and fifth order convergent in time.

After completing the first reaction step, we update the advection-diffusion
component of the system. One numerical issue that must be addressed at this
point is the nonlinearity of the enthalpy diffusion. The advection-diffusion
part of the enthalpy equation may be written explicitly in terms of enthalpy
diffusion

∂ρh

∂t
+∇ · Uρh = ∇ · κ

cp

∇h−∇ ·
(∑

k

ξk
κ

cp

∇Xk

)
(7)

We advance this equation using a linear Crank-Nicolson algorithm, but the
coefficients κ and cp vary with the solution over time and space. These varia-
tions may be incorporated into the linear scheme simply by using a predictor-
corrector iteration (detailed below), where the coefficients at the new-time are
re-evaluated between iterations. With a good initial guess for the new-time
κ and cp, a single corrector iteration is sufficient to guarantee stability and
second-order accuracy in time.

We begin the advection-diffusion step with the cell-centered data (denoted
with a superscript n) obtained from the initial chemistry advance. A second-
order Godunov procedure is used to extrapolate the temperature and abun-
dances at tn to cell edges at tn+1/2 = t + ∆t/2. The fluid density at the edges
is computed using the relation, ρ =

∑
k ρXk, and the enthalpy, h, is computed

from ρ, T , and Xk. An explicit update for the new-time abundances at cell-
centers, (ρXk)

n+1 may be formed using the extrapolated edge states, and the
projected advection velocity, UADV,

(ρXk)
n+1 = (ρXk)

n −∆t
(
∇ · UADVρXk

)n+1/2
. (8)

A corresponding cell-centered value of density at tn+1 is then available using
the expression
ρn+1 =

∑
k(ρXk)

n+1.

Next, we predict a preliminary tn+1 value of temperature, T̃ , to be used in the
initial estimates of the new-time transport coefficients. We employ a Crank-
Nicolson discretization of the temperature equation with tn values of κ and
cp.

ρn+1/2cn
p

(
T̃ − T n

∆t
+
(
UADV · ∇T

)n+1/2

)
=

1

2

(
∇κn∇T n +∇κn∇T̃

)
(9)
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where ρn+1/2 = 1/2(ρn+1 + ρn). The new-time abundances and this prelimi-
nary temperature T̃ are then used to to evaluate provisional fluid properties
(κ, cp, ξk)

n+1,∗. A predicted value of enthalpy hn+1,∗ is then computed using

ρn+1hn+1,∗ − ρnhn

∆t
=
(
∇ · UADVρh

)n+1/2
(10)

+∇ · 1

2

[
κn+1,∗

cn+1,∗
p

∇hn+1,∗ +
κn

cn
p

∇hn

]

−∇ · 1

2

∑
k

[(
ξn+1,∗
k

κn+1,∗

cn+1,∗
p

)
∇Xn+1

k +

(
ξn
k

κn

cn
p

)
∇Xn

k

]
.

We complete the predictor component of our advance algorithm by extract-
ing an updated provisional temperature, T n+1,∗, using Newton’s method from
hn+1,∗ and the Xn+1

k values computed earlier.

The corrector step begins with a re-evaluation of κ and cp using T n+1,∗ and
Xn+1

k . The final enthalpy hn+1 is obtained by solving

ρn+1hn+1 − ρnhn

∆t
=
(
∇ · UADVρh

)n+1/2
(11)

+∇ · 1

2

[
κn+1

cn+1
p

∇hn+1 +
κn

cn
p

∇hn

]

−∇ · 1

2

∑
k

[(
ξn+1
k

κn+1

cn+1
p

)
∇Xn+1

k +

(
ξn
k

κn

cn
p

)
∇Xn

k

]
.

The temperature, T n+1, is computed by once again inverting the equation of
state for enthalpy, with hn+1 and Xn+1

k . The integration of the enthalpy and
abundance equations is completed by again advancing the reaction part of the
system ∆t/2 in time. This provides a complete update of the ρ, h, T , and Xk’s
at the new time and allows us to evaluate the constraint on the constraint on
the velocity field, Sn+1 at the new time.

The final step of basic integration step is to advance the velocity to the new
time level. For this step we first obtain a provisional cell-centered velocity at
tn+1 using a time-lagged pressure gradient,

ρn+1/2
Un+1,∗ − Un

∆t
+ ρn+1/2

[
(UADV · ∇)U

]n+1/2
= −∇πn−1/2 + ρn+1/2~g.

At this point Un+1,∗ does not satisfy the constraint. We apply an approximate
projection to simultaneously update the pressure and to project Un+1,∗ onto
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the constraint surface. In particular, we solve

Lρφ = D(Un+1,∗ +
∆t

ρn+1/2
Gπn−1/2)− Sn+1 (12)

for nodal values of φ, where Lρ is the standard bilinear finite element approxi-
mation to ∇· 1

ρ
∇ with ρ evaluated at tn+1/2. In this step, D is a discrete second-

order operator that approximates the divergence at nodes from cell-centered
data, and G = −DT approximates a cell-centered gradient from nodal data.
In the formulation, φ satisfies Neumann boundary conditions at solid walls
and inflow boundaries. At outflow boundaries, Dirichlet conditions are gener-
ated to suppress any tangential accelerations on the fluid leaving the domain.
See Almgren et al. [25] for a more detailed discussion of projection issues.
Nodal values for Sn+1 for the solution of (12) are computed using a volume-
weighted average of cell-centered values. Finally, we determine the new-time
cell-centered velocity field from

Un+1 = Un+1,∗ − ∆t

ρn+1/2

(
Gφ−Gπn−1/2

)

and the new time-centered pressure from

πn+1/2 = φ.

This completes the description of the time-advancement algorithm.

Before discussing the incorporation of this methodology in an adaptive mesh
refinement algorithm, we note some of the properties of the algorithm. First,
we emphasize that the temperature equation is used only in an auxiliary capac-
ity in the algorithm. The energy is evolved using the numerically conservative
discretized enthalpy equation, (10) and (11). As noted earlier, although the
scheme rigorously satisfies conservation of mass and enthalpy, the evolution
does not strictly maintain the equation of state at ambient pressure. Since the
low Mach number asymptotics used to derive the governing equation show
that the thermodynamic pressure only satisfies (1) to O(M2), relaxing the
imposition of (1) is a reasonable way of dealing with the overdetermined sys-
tem. However, to ensure that the accumulated deviation from the equation
of state remains small over long-time integrations, we augment the constraint
equation (5) to accommodate variations in thermodynamic pressure, and ap-
proximate those terms in such a way as to gently damp the deviation to zero.
The appropriate material derivative of pressure, suitably scaled for addition
to the right hand side of equation (5),

f

γρ∂p
∂ρ

(
∂p

∂t
+ U · ∇p

)
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is included during the intermediate velocity projection required to evaluate
convective derivatives. In this expression γ = cp/cv is the ratio of the two
thermodynamic specific heats, and f is a constant relaxation factor. We ap-
proximate ∂p/∂t by (pamb − p0)/∆t, where p0 is defined discretely from equa-
tion (1), pamb is the specified ambient pressure, and U · ∇p is approximated
with upwind differences using p0. Thus, we are effectively adding a first-order
approximation to the material derivative of p0 − pamb along streamlines. This
forcing term prevents the solution from deviating an appreciable amount from
the equation of state while maintaining the second-order accuracy of the over-
all scheme.

3.2 Adaptive mesh refinement

In this section we present an overview of the adaptive projection algorithm.
This framework, used in Day and Bell [14], was initially developed by Almgren
et al. [26], and extended to low Mach number combustion by Pember et al. [27].
The discussion provides only an overview of the methodology. We refer the
reader to the above papers for more details of the basic algorithm.

Our implementation of adaptive mesh refinement (AMR) is based on a se-
quence of nested grids with successively finer spacing in both time and space.
In this approach, fine grids are formed by evenly dividing coarse cells by a
refinement ratio, r, in each direction. Increasingly finer grids are recursively
embedded in coarse grids until features of the solution are adequately re-
solved. An error estimation procedure based on user-specified criteria eval-
uates where additional refinement is needed and grid generation procedures
dynamically create or remove rectangular fine grid patches as resolution re-
quirements change.

The adaptive integration algorithm advances grids at different levels using time
steps appropriate to that level, based on CFL considerations. The multi-level
procedure can most easily be thought of as a recursive algorithm in which, to
advance level `, 0 ≤ ` ≤ `max, the following steps are taken:

• Advance level ` in time one time step, ∆t`, as if it is the only level. If ` > 0,
obtain boundary data using time-interpolated data from the grids at `− 1,
as well as physical boundary conditions, where appropriate.

• If ` < `max

· Advance level (` + 1) for r time steps, ∆t`+1 = 1
r
∆t`, using level-` data

and the physical boundary conditions.
· Synchronize the data between levels ` and `+1, and interpolate corrections

to finer levels [` + 2, . . . , `max].

The adaptive algorithm, as outlined above, performs operations to advance
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the grids at each level independent of other levels in the hierarchy (except for
boundary conditions) and then computes a correction to synchronize the levels.
Loosely speaking, the objective in this synchronization step is to compute the
modifications to the coarse grid that reflect the change in the coarse grid
solution due to the presence of the fine grid. More specifically, when solving
on a fine grid, we supply Dirichlet boundary conditions from the coarse grid.
This leads to a mismatch in the associated fluxes at the coarse-fine interface
that is corrected by the synchronization.

For the adaptive projection methodology presented here there are three ba-
sic steps in the synchronization. First, the values obtained for U , ρXk and
ρh are averaged from the fine grid onto the underlying coarse grid. We view
the resulting data as defining a preliminary composite grid solution that is
consistent between levels. We will denote this preliminary solution with a p
superscript in the remainder of the section. To complete the synchronization
we need to correct inconsistencies arising from the use of Dirichlet boundary
conditions at coarse-fine boundaries. In particular, we compute increments
to ρXk and ρh that correct the flux mismatches at coarse-fine interfaces. Fi-
nally, we correct the velocity field to satisfy a divergence constraint over the
composite grid system.

There are two components that contribute to flux mismatch. First, UADV, the
edge-based advection velocity satisfies the constraint on the coarse level and
the fine level separately. However, since we only satisfy the Dirichlet matching
condition for φMAC in (6), the value of UADV computed on the coarse level
does not match the average value on the fine grid. We define the mismatch in
advection velocities by

δUADV,` = −UADV,`,n+1/2 +
1

r2

r−1∑
k=0

∑
edges

UADV,`+1,n+k+1/2

along the coarse-fine boundary. We then solve the elliptic equation

DMAC 1

ρ
GMACδe` = DMACδUADV,`

and compute

UADV,`,corr = −1

ρ
GMACδe`

which is the correction needed for UADVto satisfy the constraint and matching
conditions on the composite (`, ` + 1) grid hierarchy. This correction field
is used to compute a modification to the advective fluxes for species and
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enthalpy that reflects an advection velocity field that satisfies the constraint
on the composite grid.

The second part of the mismatch arises because the advective and diffusive
fluxes on the coarse grid were computed without explicitly accounting for the
fine grid, while on the fine grid the fluxes were computed using coarse-grid
Dirichlet boundary data. We define the flux discrepancies

δFρh = ∆t`

−F
`,n+1/2
ρh +

1

r2

r−1∑
k=0

∑
edges

F
`+1,n+k+1/2
ρh



and

δFρXk
= ∆t`

−F
`,n+1/2
ρXk

+
1

r2

r−1∑
k=0

∑
edges

F
`+1,n+k+1/2
ρXk



where F is the total (advective+diffusive) flux through a given interface prior
to these synchronization operations. Since mass is conserved, corrections to
density, δρsync, on the coarse grid associated with mismatched advection fluxes
may be computed explicitly

δρXk
sync = −DMAC

(
UADV,corrρXk

)n+1/2
+ δFρXk

. (13)

and δρsync =
∑

k δρXsync
k .

The synchronization correction for h is more complex because of the implicit
discretization of diffusion. In particular, computing δhsync requires solution of
a linear system, since the flux mismatch contains implicit diffusion fluxes from
the Crank-Nicolson discretization. To set up the synchronization, we first note
that

δ (ρh)sync = hn+1,pδρsync + ρn+1δhsync.

Then, we have

(
ρn+1 − ∆t

2
∇κn+1

cn+1
p

∇
)

δhsync =−DMAC
(
UADV,corrρh

)n+1/2
+ δFρh

+∇ ·
∑
k

ξk(T
n+1,p)

(
κn+1

cn+1
p

∇δXsync
k

)
. (14)

The corrections δρsync, δρXsync
k , and δρhsync are added to the coarse field at

14



level-`, and interpolated to all finer levels. Finally, a new temperature field is
computed using Newton’s method on all affected levels.

A similar process is also used to generate a correction to the velocity field. How-
ever, the velocity flux correction must be projected to obtain the component
satisfying the constraint that updates U and the component that updates π.
At this point there are two additional corrections needed for the composite
velocity field:

• A correction arising because the projection at level ` + 1 used Dirichlet
data from level `, leading to a mismatch in normal derivative at coarse-fine
boundaries

• The temperature and species adjustment in the first part of the synchro-
nization leads to an increment in the computed S field.

Since the projection is linear, both of these corrections as well as the projection
of the velocity flux correction can be combined into a single, multi-level node-
based synchronization solve performed at the end of a coarse-grid time step.

We note that with the synchronization procedure outlined above, the adaptive
algorithm preserves the second-order accuracy and the conservation properties
of the single-grid algorithm. The methodology has been implemented for dis-
tributed memory parallel processors using the BoxLib class libraries described
by Rendleman et al. [28]. In this approach, grid patches are distributed to
processors using a heuristic knapsack algorithm to balance the computational
work developed by Crutchfield [29] (see also, Rendleman et al. [28]).

4 Results

In this section we present two sets of computational results. The first set of
results presents comparisons of the low Mach number model with a compara-
ble compressible code for one-dimensional flames at various densities. These
examples serve to validate the low Mach number algorithm and quantify the
errors associated with the low Mach number approximation. The second set
of results describes the application of the methodology to simulation of the
Landau-Darrieus instability in two dimensions.

The numerical simulations were performed using the equation of state de-
scribed by Timmes and Swesty [30] which computes the internal energy, pres-
sure and thermodynamic derivatives (including the specific heats at constant
volume and pressure) of these quantities as functions of temperature, density
and the nuclear-species mass fractions. The values of the thermal conductivity,
κ, are calculated using the procedure described by Timmes [31].
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4.1 Validation

The validation studies were performed by comparing one-dimensional laminar
solutions tabulated in Dursi et al. [32] to 12C/24Mg nuclear flames for several
physical conditions. Each simulation was constructed in the same way. A two-
dimensional domain, periodic in one dimension, and with an inflow boundary
condition on one face and an outflow condition on the opposite face is con-
structed. For each case we initialize the domain with an interface separating
12C fuel and 24Mg ash. We specify density and temperature for the 12C and
temperature for the 24Mg. For this specification, the temperature of the fuel
must be below the initiation temperature for the reaction whereas the initial
ash temperature must be high enough to ignite the flame. The ash density
is computed from the equation of state so that pressure is constant in the
domain, consistent with the low Mach number hypothesis. We specify inflow
of the cold fuel at a fixed speed on the 12C side of the interface and specify
outflow on the 24Mg side. The region of contact between the fuel and the ash
is smoothed over a distance that is a small fraction of the size of the compu-
tational domain. The grid spacing is specified so that there are approximately
5 computational zones, at the coarsest level of refinement, in the flame.

The simulation proceeds with a single level of refinement until the initiation
of the nuclear flame which is seen as a deviation of the temperature of the
outflowing ash and a sharp increase in the energy generation rate. At that
point, additional levels of refinement are added to the simulation until the
speed of the nuclear flame and the flame shape converges. The simulation is
then restarted using this computed constant speed to obtain a steady laminar
solution.

To model the 12C/24Mg reaction we used a single-step mechanism derived from
Caughlan and Fowler [33]. This reaction has the form:

Ẋ12C(t) =− 1

12
R(T )ρX2

12C(t)

Ṫ (t) =−QẊ12C(T )/cp.

where the rate of reaction, R(T ), is

R(T ) = 4.27 · 1026T
5/6
9,a

T
3/2
9

exp

−84.165

T
1/3
9,a

− 2.12 · 10−3T 3
9

 ,

T9 = T/109 K, T9,a = T9/(1 + 0.0396T9), ρ is density, and Q is a constant. For
the 12C/24Mg reaction, the value of the specific energy release, Q, is taken to
be 5.57 · 1017 erg/g. As noted above, the specific heat can be held constant
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with no apparent loss of accuracy. We neglect the effects of nuclear screening
on this rate, as they are quite small for the conditions we consider.

Two 12C/24Mg simulations with initial 12C density values of ρ = 2.5 and
5 · 107 g/cm3, both with a fuel temperature of 107 K were run. Measured
laminar flame speeds differed by no more that .1% from those listed in Dursi
et al. [32]. Figure 1 shows the laminar flame solution for temperature, density
and flow velocity for the case in which the initial 12C density is 5 · 107 g/cm3.
The slight differences in the computed flame speed between FLASH and the low
Mach number code result in slightly different flame locations after the flame
has relaxed to a full steady state. We have corrected for this effect by spatially
shifting the FLASH solutions for comparison to the low Mach number results.
In Figure 1 we plot the computed laminar flame solution and the difference
between low Mach number solution and the solution computed with FLASH The
largest difference is in temperature which shows an error of approximately
1.25% in the transition region where temperature changes by almost three
orders of magnitude. Differences between the solutions for density and flow
velocity are less than 1%.

Finally, we make some additional remarks concerning the relative efficiency
of the low Mach number method compared to the compressible methods. The
low Mach number method in this paper and the compressible method used in
FLASH have similar strategies for resolving spatial structures in the fluid flow.
Therefore, they tend to result in similar resolutions in their spatial discretiza-
tions. Where they differ is in the time-step requirements. The time steps in a
compressible method are limited by the need to obey the CFL constraint using
as a velocity the speed of sound in the fluid; the low Mach number method has
a similar CFL constraint, however it uses the fluid advection velocity. For the
case considered in this section, the speed of sound is approximately 5·108 cm/s,
while a typical advective velocity is the laminar flame speed, which is approx-
imately 6.82 · 105 cm/s. Thus, the low Mach number implementation requires
roughly a factor of 1000 fewer time steps to model the same flow. For lower
density flames, and flames that contain more than one species, this disparity
can be even greater. For example, a flame consisting of 75% 12C and 25% 16O
at a density of 2.5 · 107 g/cm3 has a ratio of sound speed to laminar speed of
nearly 5000.

4.2 Landau-Darrieus simulations

In this section we describe simulations designed to illustrate the Landau-
Darrieus (LD) instability in a nuclear flame using direct numerical simulation.
A perturbed initial planer inflow of 12C fuel impinges on a hot, lower density
24Mg ash. As above, the fuel burns in a single-step mechanism to form the ash.
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Fig. 1. Laminar flame solution for ρ = 5 · 107 g/cm3, T = 107 K. Shown are the
solutions for density, speed, and temperature. The difference with the FLASH results
from Dursi et al. [32] is indicated on the temperature result

The initial perturbation is formed by shifting the laminar flame solution for
the corresponding density, temperature, and mass fractions such that a fixed
number of wavelengths of random phase and amplitude are contained in the
domain.

Before illustrating the application of the method discussed above to the dy-
namics of multi-mode Landau-Darrieus instabilites, we first present a two-
dimensional convergence study for a single mode in a smaller domain to as-
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Fig. 2. Two-dimensional convergence study. Left: Curves represent temperature ver-
sus distance along a vertical slice through the cusp for base resolutions of 32× 32,
64× 64, and 128× 128, with 2 levels of refinement .420 µs. Right: image of temper-
ature field at medium and finest resolutions.

sess the resolution requirements needed for accurate multidimensional simula-
tions. For this study we initialize with a single frequency in a small domain of
.32× .32 cm2 at 3 resolutions corresponding to base grids of 32× 32, 64× 64,
and 128×128 using 2 levels of refinement. Figure 2 demonstrates convergence
of the method and shows that acceptable accuracy is obtained on the 64× 64
base grid, which corresponds to approximately 5 points per flame thickness
at the grid spacing of the finest level. The flame thickness is defined to be
(Tmax − Tmin)/max(∇T ). (Another common definition for the flame thickness
is the width of the zone 10%–90% of the peak temperature, Timmes and
Woosley [19], which results in flame thickness about twice as large.) For the
computations presented below we have used a resolution comparable to the
128× 128 case.

Figure 3 illustrates the LD instability by showing the time history of velocity
field. In this calculation the random perturbation of the initial planar laminar
solution contained 30 frequencies of amplitude approximately 50 times the
laminar flame thickness. The domain is 2.56× 1.28 cm2 with 1024× 512 zones
at the coarsest level of refinement. Cells with steep temperature gradients
were refined up to two levels giving an effective computational domain of
4096× 2048 zones. The density of the 12C fuel is 5 · 107 g/cm3 and the inflow
temperature is 107 K; 12C fuel is being passed in from the bottom into the
ash that is at the top of the figure (i.e. the center of the star is above the
top of the figure). In this figure, the letters A and B mark two cusps that
slowly coalesce to form a single LD cusp. This behavior was also seen in the
LD calculation described next, and we conjecture that in periodic domains LD
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A B
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Fig. 3. Time history of LD simulation, showing coalescence of LD peaks (e.g., A
and B); ρ = 5 · 107 g/cm3 and T = 107 K. Shown is vertical flow velocity. The
‘searchlights’ are regions of lower flow speed in the ash (see Figure 4.) Time increases
down the left hand column from .78 µs and continues down the right column to
3.4 µs.

cusps will always coalesce until only one cusp remains. Figure 4 explains the
appearance of the ‘searchlight’ features in Figure 3. Although the flow speed
in the ash is sharply peaked at the LD cusp, it rapidly decays to a speed that
is lower than the post-flame speed in the valleys between the cusps. The flow
speed in the fuel is depressed the valleys between the cusps relative to the flow
speed in the fuel below the LD cusps.

Figure 5 shows a well developed LD cusp for a simulation performed on a
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Fig. 5. Landau Darrieus Cusp: 12C, ρ = 5 · 107 g/cm3, T = 107 K; t = 10 µs.

smaller domain (1.28× .64 cm2 at base resolution of 512×256) using the same
material parameters as in the previous example. In this case, only 5 frequencies
were used to randomize the planar laminar solution. After about 2–3 µs the
details of the initial perturbations have disappeared and the LD cusps have
coalesced. We continued to track the solution up to 10 µs. Figure 6 shows the
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displacement in the stabilized LD cusp over a time range of approximately
3 µs, indicating a increase in the laminar speed of 12, 210 cm/s, or about
1.8%. Over the time period 3–10 µs the amplitude of the cusp decreases by
.009 cm, which is approximately 10% of the extent of the cusp at t = 3 µs.
The long time behavior of an isolated cusp is under investigation.

We note that the behavior of the flame undergoing the Landau-Darrieus in-
stability at this density is considerable smoother than that shown in Niemeyer
and Hillebrandt [5] for the same density. The reason for this difference is that
we initialize the problem in pressure equilibrium whereas Niemeyer and Hille-
brandt do not. Consequently, in the Niemeyer and Hillebrandt study there is
an initial transient phase in which the acoustic waves relax in the domain.
(This relaxation occurs on a much faster time scale than the flame propaga-
tion.) As a result, their flame propagates into region where the velocity field
contains fine-scale remnants of the relaxation whereas in our simulations the
flame propagates into an undisturbed region.

Several mechanisms have been proposed [1] that could give rise to an accel-
eration of the laminar flame speed in a Type Ia supernova. One part of some
of these mechanisms is that the LD instability through the wrinkling in the
flame surface, while not giving rise to turbulent motion, could give rise to suf-
ficient flame speed acceleration to account for observed isotopic abundances
and energy release. These calculations seem to indicate the LD instability by
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itself is insufficient to give rise to significant acceleration of the flame front.

5 Conclusions

The low Mach number numerical methods for chemical combustion introduced
by Day and Bell [14] has been successfully extended to account for non-ideal
gas law equations of state. The method yields results that compare well with
established compressible simulations (Dursi et al. [32]). The low Mach number
method enables new astrophysical problems to be explored, such as fully re-
solved instabilities at low-moderate densities; such problems are not tractable
with a fully compressible code.

The computer program implementing the algorithms presented in this paper
will be used to conduct several sets of computational experiments aimed at
increasing our understanding of the microphysics of nuclear flames. Though
not detailed in the presentation, the program has already been extended to
handle more than one nuclear reaction, more than two isotopes, and three di-
mensions. This code will be used to perform a comprehensive examination of
the phenomenology of two dimensional instabilities of the flame front. Later,
the effects of Landau-Darrieus and Rayleigh-Taylor instabilities and their in-
teraction with turbulence will be examined in three dimensions.
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